Kamis, 03 Februari 2011

Besaran dan satuan

Besaran adalah sesuatu yang dapat diukur dan memiliki nilai dan satuan. Dalam hal ini nilai yang dimaksud adalah nilai kuantitatif, atau nilai yangt diperoleh dari hasil pengukuran, bukan nilai kualitattif yang berdasarkan intuisi subjektif. Dalam fisika besaran dibagi menjadi dua, yaitu besaran pokok dan besaran turunan.

Besaran pokok

Besaran pokok adalah besaran yang murni, dalam artian besaran ini bukan merupakan turunan dari besaran lain. Adapun besaran pokok ada 7 yaitu, massa, panjang, waktu , suhu, kuat arus, jumlah molekul, intensitas cahaya

Massa (m) adalah ukuran yang digunakan untuk mengukur seberapa banyak zat yang dikandung suatu benda yang dalam hal ini ukuran fisisnya. Dalam SI satuan massa adalah Kg dan dalam CGS adalah gram ( g ). Dalam kehidupan sehari-hari, banyak orang-orang yang salah kaprah. Seringkali massa diidentikkan dengan berat, sehingga apabila kita membeli apel dengan massa 1 Kg, maka kita akan menyebutnya dengan berat 1 Kg, padahal berat adalah sebuah gaya yang merupakan turunan dari massa yang dikalikan dengan percepatan bumi  dan mempunyai simbol W dengan satuan Newton ( N ).

Panjang adalah suatu dimensi pengukuran untuk menunjukkan suatu jarak antara suatu titik dengan titik yang lain. Misalnya kita mempunyai sebuah batang kayu yang ujung-ujungnya kita namai ujung A dan ujung B, kemudian kita ukur jarak antara ujung A dan B tersebut, maka nilai yang kita peroleh dari kegiatan mengukur adalah panjang dari kayu tersebut. Adapun satuan panjang dalam SI ( Sistem Internasional ) adalah meter ( m ) dan simbol panjang adalah l ( length ). Dalam satuan lain, panjang dapat dinyatakan dengan satuan cm yaitu dengan system CGS ( Centimeter, Gram, Sekon ).

Waktu menurut Kamus Besar Bahasa Indonesia (1997) adalah seluruh rangkaian saat ketika proses, perbuatan atau keadaan berada atau berlangsung. Dalam hal ini, skala waktu merupakan interval antara dua buah keadaan/kejadian, atau bisa merupakan lama berlangsungnya suatu kejadian. Tiap masyarakat memilki pandangan yang relatif berbeda tentang waktu yang mereka jalani. Waktu mempunyai satuan dalam SI yaitu sekon ( s ) dan diberi simbol t ( time ).

Suhu (T ) adalah derajat panas atau dinginnya suatu benda. Suhu diperoleh dari gerakan –gerkan partikel penyusun suatu benda yang mempunyai energi tinggi. Satuan suhu dalam SI adalah Kelvin ( K ) dan dapat dinyatakan pula dengan satuan yang lain, misalnya Celcius, Reamur, dan Fahrenheit.

Kuat arus ( i )adalah nilai banyak sedikitnya elektron yang yang berpindah , dalam hal ini arah arus berkebalikan dengan arah electron, jika arus bergerak dari potensial tinggi ke potensial rendah, maka elekterin bergerak sebaliknya. Satuan arus dalm SI adalah Ampere ( A ).

Jumlah molekul ( N ) adalah nilai banyak sedikitnya molekul yang terkandung dalam suatu zat, dalam hal ini satuan jumlah molekul dalam SI adalah mol.

Intensitas cahaya adalah banyak sedikitnya cahaya yang menyinari. Satuan intensitas cahaya adalah Candela (Cd).

Besaran turunan

Besaran turunan adalah besaran yang diperoleh melalui kombinasi besaran pokok. Sebagai contoh kecepatan adalah kombinasi dari jarak ( panjang ) dan waktu yaitu dengan membagi jarak dengan waktu, dimana V( velocity ) adalah kecepatan, S adalah jarak, dan t adalah waktu , sehingga satuan dari kecepatan dalam SI adalah m/s. Adapun jumlah besaran turunan adalah ribuan yang dihasilkan dari berbagai hukum dan teori.

Read More......

Olimpiade Sains Nasional

 

 
logo OSN
 

Olimpiade Sains Nasional adalah ajang berkompetisi dalam bidang sains bagi para siswa pada jenjang SD, SMP, dan SMA di Indonesia. Siswa yang mengikuti Olimpiade Sains Nasional adalah siswa yang telah lolos seleksi tingkat kabupaten dan propinsi dan karenanya adalah siswa-siswa terbaik dari propinsinya masing-masing.


Pelaksanaan Olimpiade Sains Nasional ini didasarkan pada kesuksesan Indonesia sebagai tuan rumah Olimpiade Fisika Internasional (IPhO - International Physics Olympiad) yang diselenggarakan di Bali pada tahun 2002.

                                                                                                                                                                                                                                                                                                                                                                         Olimpiade Sains Nasional diadakan setiap tahun di kota yang berbeda-beda. Kegiatan ini merupakan salah satu bagian dari rangkaian seleksi yang dimulai dari tingkat sekolah, kemudian ke tingkat kabupaten sampai ke tingkat nasional untuk mendapatkan siswa-siswi terbaik dari seluruh Indonesia yang akan dibimbing lebih lanjut oleh tim bidang kompetisi masing-masing dan akan diikutsertakan pada olimpiade-olimpiade tingkat internasional.

Bidang

Jenjang SD: Matematika dan IPA
Jenjang SMP: Matematika, Fisika, Biologi, dan pada tahun 2008 ditambahkan bidang baru yaitu Astronomi, tetapi pada tahun 2009, bidang Astronomi ditiadakan kembali. Tahun 2010 ditambahkan bidang baru yaitu IPS
Jenjang SMA: Matematika, Fisika, Biologi, Kimia, Astronomi, Komputer, Ekonomi, dan pada tahun 2008 ditambahkan bidang baru yaitu Kebumian

Pelaksanaan

Sampai saat ini Olimpiade Sains Nasional telah dilaksanakan sebanyak delapan kali :
tahun 2002 di Yogyakarta.
tahun 2003 di Balikpapan, Kalimantan Timur.
tahun 2004 di Pekanbaru, Riau.
tahun 2005 di Jakarta.
tahun 2006 di Semarang, Jawa Tengah.
tahun 2007 di Surabaya, Jawa Timur.
tahun 2008 di Makassar, Sulawesi Selatan
tahun 2009 di Jakarta
tahun 2010 di Medan, Sumatera Utara.
tahun 2011 di Manado, Sulawesi Utara.

Dibawah ini saya mempunyai beberapa soal OSN bidang fisika dan seleksi TOFI yang mungkin berguna :

Soal seleksi TOFI 1998 download disini

Soal seleksi TOFI 1999 download disini

Soal seleksi TOFI 2000 download disini

Soal seleksi TOFI 2002 download disini

OSN 2004

Soal provinsi 2004 download disini

Soal OSN teori 2004 download disini

Soal OSN eksperimen 2004 download disini

OSN 2006

Soal Kabupaten 2006 download disini

Soal Provinsi 2006 download disini

Soal OSN teori 2006 download disini

Soal OSN eksperimen 2006 download disini

Solusi Provinsi 2006 download disini

Solusi OSN eksperimen 2006 download disini

OSN 2007

Soal jawab Provinsi 2007 download disini

Soal jawab OSN teori 2007 download disini

Soal jawab OSN eksperimen 2007 download disini

OSN 2008

Soal Kabupaten 2008 download disini

Soal Provinsi 2008 download disini

Soal OSN teori 2008 download disini

Soal OSN eksperimen 2008 download disini

Solusi Kabupaten 2008 download disini

Solusi Provinsi 2008 download disini

Solusi OSN eksperimen 2008 download disini

OSN 2009

Soal Kabupaten 2009 download disini

Soal Provinsi 2009 download disini

Soal OSN teori 2009 download disini

Soal OSN eksperimen 2009 download disini

Solusi Kabupaten 2009 download disini

Solusi Provinsi 2009 download disini

Solusi OSN teori 2009 download disini

Solusi OSN eksperimen 2009 download disini


Read More......

Jumat, 28 Januari 2011

IPhO ( International Physics Olympiad )

Olimpiade Fisika Internasional

Olimpiade Fisika Internasional (Inggris: International Physics Olympiad atau IPhO) adalah sebuah kompetisi fisika tahunan untuk pelajar Sekolah Menengah Atas. IPho merupakan salah satu dari olimpiade sains internasional. IPhO yang pertama diadakan di Warsawa, Polandia pada tahun 1967.

Setiap delegasi negara terdiri dari lima orang pelajar ditambah dua ketua yang dipilih pada tingkat nasional. Pengamat diperkenankan menemani tim nasional. Para pelajar berkompetisi secara individual dan harus menyelesaikan persoalan-persoalan teoritis dan laboratorium. Para pemenang akan mendapatkan medali emas, perak, perunggu atau gelar kehormatan.

Daftar penyelenggaraan
1967 Warsawa, Polandia
1968 Budapest, Hongaria
1969 Brno, Cekoslowakia
1970 Moskwa, Uni Soviet
1971 Sofia, Bulgaria
1972 Bukares, Rumania
1974 Warsawa, Polandia
1975 Guestrow, Jerman Timur
1976 Budapest, Hongaria
1977 Koeniggraetz, Cekoslowakia
1979 Moskwa, Uni Soviet
1981 Varna, Bulgaria
1982 Malente, Jerman Barat
1983 Bukares, Rumania
1984 Sigtuna, Swedia
1985 Portorož, Yugoslavia
1986 London-Harrow, Britania Raya
1987 Jena, Jerman Timur
1988 Bad Ischl, Austria
1989 Warsawa, Polandia
1990 Groningen, Belanda
1991 Havana, Kuba
1992 Helsinki, Finlandia
1993 Williamsburg, Amerika Serikat
1994 Beijing, Republik Rakyat Cina
1995 Canberra, Australia
1996 Oslo, Norwegia
1997 Sudbury, Ontario, Kanada
1998 Reykjavík, Islandia
1999 Padova, Italia
2000 Leicester, Britania Raya
2001 Antalya, Turki
2002 Bali, Indonesia
2003 Taipei, Taiwan
2004 Pohang, Korea Selatan
2005 Salamanca, Spanyol
2006 Singapura
2007 Isfahan, Iran
2008 Hanoi, Vietnam
2009 Mérida, Meksiko
2010 Zagreb, Kroasia
2011 Bangkok, Thailand
2012 Tartu dan Tallinn, Estonia
2013 Denmark
2014 Slovenia
2015 India
2016 Swiss dan Liechtenstein
2017 Moldova
2018 Portugal
2019 Israel
2020 Lithuania
2021 Indonesia
2022 Jepang
2023 Iran

Partisipasi Indonesia

Indonesia pertama kali mengikuti Olimpiade Fisika Internasional (IPhO) pada tahun 1993 dengan mengirimkan Tim Olimpiade Fisika Indonesia (TOFI). Berikut adalah prestasi yang berhasil diraih Tim Olimpiade Fisika Indonesia:

Jonathan Pradana Mailoa, Juara dunia IPhO 2006 dari Indonesia


IPhO 1993; 1 perunggu (Oki Gunawan) dan 1 honorable (Jemmy W)
IPhO 1994; tidak memperoleh medali
IPhO 1995; 1 perak (Teguh Budimulia), 1 perunggu (Agus B Abdillah), dan 3 honorable (Herry, Putu Adiartha, Rudy Raymond)
IPhO 1996; 1 perunggu (Wahyu Setiawan) dan 4 honorable (Andi Soedibjo, Andri Purnama, Wayan Gde, Herman Pandana)
IPhO 1997; 2 perunggu (Boy Tanto, Wayan Gde) dan 1 honorable (Hendra)
IPhO 1998; 3 honorable (Boy Tanto, Barlino Effendi, Ikhsan Ramdan)
IPhO 1999; 1 emas (Made Wirawan), 1 perak (Ferdinand Wawolumaya), 2 perunggu (Landobasa Tobing, Jerry Prawira), dan 1 honorable (Mamuri)
IPhO 2000; 4 perunggu (Bahar Riand Passa, Bremana Adhi, Yoga Dviyana, Halim K) dan 1 honorable (Zainul Abidin)
IPhO 2001; 2 perak (Rezy Pradipta, Frederick) dan 3 perunggu (Anthony Iman, Imam Makhfud, Rizki M Ridwan)
IPhO 2002; 3 emas (Widagdo Setiawan, Agustinus Peter Sanggamu, Fajar Ardian), 1 perak (Christoper Hendriks), dan 1 perunggu (Evelyn Mintarno)
IPhO 2003; 1 emas (Widagdo Setiawan), 2 perak (Bernard Ricardo, Rangga Perdana Budoyo), dan 2 perunggu (Tri Wiyono Darsono, Yudistira Virgus)
IPhO 2004; 1 emas (Yudistira Virgus), 1 perak (Edbert Jarvis Sie), 2 perunggu (Ardiansyah, Andhika Putra), dan 1 honorable (Ali Sucipto)
IPhO 2005; 2 emas (Andhika Putra, Ali Sucipto) dan 3 perunggu (Purnawirman, Michael Adrian, Ario Prabowo)
IPhO 2006; 4 emas (Jonathan Pradana Mailoa (juara dunia), Pangus Ho, Irwan Ade Putra, Andi Octavian Latief ) dan 1 perak (Muhammad Firmansyah Kasim)
IPhO 2007; 1 emas (Muhammad Firmansyah Kasim), 3 perak (Rudy Handoko Tanin, Musawwadah Mukhtar, Yosua M Maranatha), dan 1 perunggu (David Halim)
IPhO 2008; 2 emas (Kevin Winata, Rudy Handoko Tanin), 2 perak (Thomas Aquinas Nugraha Budi, Adam Badra Cahaya), dan 1 perunggu (Tyas Kokasih)
IPhO 2009; 1 emas (Fernaldo Richtia Winnerdy, 3 perak ( Winson Tanputraman, Dzuhri Radityo Utomo, Andri Pradana), dan 1 perunggu (Paul Zakaria Fajar Hanakata) 
IPhO 2010; 4 emas (Christian George Ernor, Kevin Soedyatmiko, David Giovanni, Muhammad Sohibul Maromi), 1 perak (Ahmad Ataka Awwalur Rizqi)

Disini saya punya beberapa soal IPhO yang mungkin berguna :

Download soal IPhO 2002-1 klik disini

Download soal IPhO 2002-2 klik disini

Download soal IPhO 2002-3 klik disini

Download solusi IPhO 2002-1 klik disini

Download solusi IPhO 2002-2 klik disini

Download solusi IPhO 2002-3 klik disini

Download soal IPhO 2008-1 klik disini

Download soal IPhO 2008-2 klik disini

Download soal IPhO 2008-3 klik disini

Download solusi IPhO 2008-1 klik disini

Download solusi IPhO 2008-2 klik disini

Download solusi IPhO 2008-3 klik disini

Read More......

Kamis, 27 Januari 2011

KERS ( Kinetic Energy Recovery System )

What is KERS?

The acronym KERS stands for Kinetic Energy Recovery System. The device recovers the kinetic energy that is present in the waste heat created by the car’s braking process. It stores that energy and converts it into power that can be called upon to boost acceleration.



How does it work?
There are principally two types of system - battery (electrical) and flywheel (mechanical). Electrical systems use a motor-generator incorporated in the car’s transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released when required.

Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car’s rear wheels. In contrast to an electrical KERS, the mechanical energy doesn’t change state and is therefore more efficient.

There is one other option available - hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.


Do the regulations place limitations on the use of KERS?
Currently the regulations permit the systems to convey a maximum of 60kw (approximately 80bhp), while the storage capacity is limited to 400 kilojoules. This means that the 80bhp is available for anything up to 6.67s per laps, which can be released either all in one go, or at different points around the circuit. Lap time benefits range from approximately 0.1 to 0.4s.

How is the stored energy released by the driver?
The regulations stipulate that the release must be completely under the driver’s control. There is a boost button on the steering wheel which can be pressed by the driver.

Why was KERS introduced?
The aims are twofold. Firstly to promote the development of environmentally friendly and road car-relevant technologies in Formula One racing; and secondly to aid overtaking. A chasing driver can use his boost button to help him pass the car in front, while the leading driver can use his boost button to escape. In line with the regulations, there are limits on the device’s use and therefore tactics - when and where to use the KERS energy - come into play.

Is a car running KERS heavier than one which is not running the system?
No. A typical KERS system weighs around 35 kilograms. Formula One cars must weigh at least 620kg (including the driver), but traditionally teams build the car to be considerably lighter and then use up 70kg of ballast to bring it up to weight. This means that teams with KERS have less ballast to move around the car and hence have less freedom to vary their car’s weight distribution. Heavier drivers are at a particular disadvantage, an issue addressed by the raising of the minimum car weight for the 2011 season.

Do teams have to use it?
The use of KERS is not compulsory. Several teams used it during its introductory 2009 season. A gentlemen's agreement between constructors then precluded its use in 2010, before its return in 2011.

Read More......

MAGLEV ( Magnetic Levitation Train )

Magnetic Levitation Train, also maglev train, a high-speed ground transportation vehicle levitated above a track called a guideway and propelled by magnetic fields. Magnetic levitation train technology can be used for urban travel at relatively low speeds (less than 100 km/h, or less than 62 mph). For example, a short-distance maglev shuttle operated for 11 years from 1984 to 1995 between the Birmingham, England, airport and the city train station. However, the greatest worldwide interest is in high-speed maglev systems. Train speeds of 552 km/h (343 mph) have been demonstrated by a full-size maglev vehicle in Japan, while in Germany a maglev train has run at 450 km/h (280 mph) and in China a maglev train has reached a peak speed of 432 km/h (268 mph).

Two different approaches to magnetic levitation train systems have been developed. The first, called electromagnetic suspension (EMS), uses conventional electromagnets mounted at the ends of a pair of structures under the train. The structures wrap around and under either side of the guideway. The magnets attract up toward laminated iron rails in the guideway and lift the train. However, this system is inherently unstable; the distance between the electromagnets and the guideway, which is about 10 mm (3/8 in), must be continuously monitored and adjusted by computer to prevent the train from hitting the guideway. A track 31.5 km (19.6 mi) long in Emsland, Germany, was used extensively to test this approach. As a result of these tests, the German government granted a commercial license to Transrapid International (TRI), a company headquartered in Berlin, Germany, to develop maglev systems based on the EMS design.
The second design, called electrodynamic suspension (EDS), uses the opposing force between superconducting magnets on the vehicle and electrically conductive strips or coils in the guideway to levitate the train. This approach is inherently stable, and it does not require continued monitoring and adjustment. There is also a relatively large clearance between the guideway and the vehicle, typically 100 to 150 mm (4 to 6 in). However, the EDS maglev system uses superconducting magnets, which are more expensive than conventional electromagnets and require a refrigeration system in the train to keep the superconducting magnets cooled to low temperatures (see Superconductivity). A 7-km (4-mi) test track for this design, based in large part on designs developed in the United States in the late 1960s and early 1970s, was built in 1977 in Miyazaki, Japan, by the Railway Technical Research Institute, a Japanese firm. Both EMS and EDS systems use a traveling magnetic wave along the guideway to propel the maglev train while it is suspended above the track.
Maglev systems offer a number of advantages over conventional trains that use steel wheels on steel rails. Because magnetic levitation trains do not touch the guideway, maglev systems overcome the principal limitation of wheeled trains—the high cost of maintaining precise alignment of the tracks to avoid excessive vibration and rail deterioration at high speeds. Maglev trains can provide sustained speeds greater than 500 km/h (300 mph), limited only by the cost of power to overcome wind resistance.
Because maglev vehicles do not touch the guideway and therefore encounter no friction, they can achieve faster acceleration and braking; greater climbing capability; enhanced operation in heavy rain, snow, and ice; and reduced noise. Maglev systems are also energy efficient. For distances of several hundred miles, they use about half the energy per passenger as a typical commercial aircraft. Electrified transportation systems, such as maglev systems, also reduce the use of petroleum and pollute the air less than aircraft, diesel locomotives, and automobiles (see Air Pollution).
A Transrapid maglev system began service in January 2004 in Shanghai, China, connecting the city to the Pudong International Airport. The train conveys passengers over the 32-km (20-mi) route between downtown and the airport in 8 minutes, compared with 30 minutes by automobile. Additional plans for high-speed maglev systems include two lines within Germany: one an 80-km (50-mi) route between Düsseldorf and Dortmund and the other a 30-km (20-mi) connector linking Munich to its airport.

In Japan, a 43-km (27-mi) maglev test track was built in 1996 in Yamanashi Prefecture, about 100 km (62 mi) west of Tokyo. If the proposed maglev vehicle successfully completed testing, the test track was to be extended in each direction to Tokyo and Osaka and opened to the public as a revenue-generating service. This new commercial line was expected to relieve passenger demand on the Shinkansen high-speed trains, which currently operate at peak speeds of 300 km/h (186 mph).
In the United States, two high-speed maglev projects using Transrapid technology have been selected by the U.S. Department of Transportation for environmental and preconstruction planning. One is a proposed 76-km (47-mi) track linking the city of Pittsburgh, Pennsylvania, its eastern suburbs, and Pittsburgh Airport. The other project is a proposed 64-km (40-mi) track linking Camden Yards in Baltimore, Maryland, the Baltimore-Washington Airport, and Union Station in Washington, D.C. For maglev systems to become a significant part of the U.S. transportation system, they will have to be viewed as an essential part of an integrated transportation infrastructure.


Read More......

Fotolistrik

Fotolistrik merupakan peristiwa dipancarkannya elektron ketika permukaan suatu logam disinari cahaya. Elektron yang terlepas dinamakan foto elektron.

Prinsip pengukuran efek fotolistrik.

   


Ada beberapa hal menarik dari percobaan fotolistrik yang tidak dapat diterangkan jika kita menganggap cahaya sebagai gelombang. Hal-hal ini pula yang menyebabkan Einstein mengemukakan teorinya.

1. Hasil percobaan tidak semua frekuensi gelombang cahaya dapat menyebabkan efek fotolistrik. Misal pada logam natrium, jika frekuensi penyinaran <>14 Hz maka tidak akan ada arus walaupun intensitas cahaya diperbesar, padahal menurut teori gelombang, apabila cahaya diperbesar intensitasnya, maka energi gelombang akan bertambah besar yang berakibat energi yang diserap elektron juga bertambah dan arus semakin besar tetapi kenyataannya tidak demikian. Menurut Einstein energi cahaya adalah berupa kuanta yang berarti energinya tidak kontinyu dimana energinya ( E ) diserap oleh tiap partikel elektron sebesar satu energi ( foton ) per elektron sehingga energi elektron akan naik sebesar E = hf , ketika kenaikan energi ini lebih besar daripada energi ikat atom logam, maka elektron akan terlepas begitu pula sebaliknya, apabila E lebih kecil daripada energi ikat atom, maka tidak akan ada arus mengalir. Frekuensi terkecil cahya yang dapat melepaskan elektron disebut f0 . Sedangkan energinya disebut energi ambang E0 = hf0 . Besar energi ambang ini harus sama dengan energi ikat atom Ф = hf0 yang dinamakan fungsi kerja. Apabila elektron mendapatkan kelebihan energi, maka kelebihan energi ini ,menjadi energi elektron  untuk bergerak yaitu yang menjadi energi kinetik maksimum.

  hf = Ф + (Ek)max  

2. Ketika frekuensi cahaya lebih besar daripada frekuensi ambang, maka akan dideteksi arus. Tetapi energi kinetik maksimum elektron ini tidak dipengaruhi intensitas, melainkan hanya tergantung pada frekuensi sinar yang datang. Menurut einstein, intensitas yang besar berarti foton yang diserap elektron jumlahnya akan menjadi semakin besar, akibatnya akan makin banyak elektron yang terpental ( jika f > f0 ). Namun tiap elekteon hanya mendapat "jatah" satu foton saja sehingga energi kinetik dari elektron todak dipengaruhi oleh banyaknya foton yang artinya tidak bergantung dengan intensitas cahaya yang datang. Elektron yang mendapat energi dari cahaya, tidak butuh waktu lama untuk terpental sekitar 10-9 s bahkan untuk intensitas yang rendah. Menurut Einstein, jika kita mengacu pada teori cahaya sebagai gelombang, akan sulit untuk diterangkan.

Read More......

Rabu, 26 Januari 2011

Einstein's relativity theory

General Relativity

    The development of general relativity began with the equivalence principle, under which the states of accelerated motion and being at rest in a gravitational field (for example when standing on the surface of the Earth) are physically identical. The upshot of this is that free fall is inertial motion; an object in free fall is falling because that is how objects move when there is no force being exerted on them, instead of this being due to the force of gravity as is the case in classical mechanics. This is incompatible with classical mechanics and special relativity because in those theories inertially moving objects cannot accelerate with respect to each other, but objects in free fall do so. To resolve this difficulty Einstein first proposed that spacetime is curved. In 1915, he devised the Einstein field equations which relate the curvature of spacetime with the mass, energy, and momentum within it.

    Some of the consequences of general relativity are:
- Clocks run more slowly in regions of lower gravitational potential. This is called gravitational time dilation.
- Orbits precess in a way unexpected in Newton's theory of gravity. (This has been observed in the orbit of              Mercury and in binary pulsars).
- Rays of light bend in the presence of a gravitational field.
- Rotating masses "drag along" the spacetime around them; a phenomenon termed "frame-dragging".
- The Universe is expanding, and the far parts of it are moving away from us faster than the speed of light.

    Technically, general relativity is a metric theory of gravitation whose defining feature is its use of the Einstein field equations. The solutions of the field equations are metric tensors which define the topology of the spacetime and how objects move inertially.


Special Relativity

    Special relativity is a theory of the structure of spacetime. It was introduced in Albert Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists see History of special relativity). Special relativity is based on two postulates which are contradictory in classical mechanics:
    1.The laws of physics are the same for all observers in uniform motion relative to one another (principle of             relativity),
    2.The speed of light in a vacuum is the same for all observers, regardless of their relative motion or of the               motion of the source of the light.

    The resultant theory agrees with experiment better than classical mechanics, e.g. in the Michelson-Morley experiment that supports postulate 2, but also has many surprising consequences. Some of these are:
- Relativity of simultaneity: Two events, simultaneous for one observer, may not be simultaneous for another      observer if the observers are in relative motion.
- Time dilation: Moving clocks are measured to tick more slowly than an observer's "stationary" clock.
   Length contraction: Objects are measured to be shortened in the direction that they are moving with respect    to the observer.
- Mass–energy equivalence: E = mc2, energy and mass are equivalent and transmutable.
- Maximum speed is finite: No physical object or message or field line can travel faster than light.

    The defining feature of special relativity is the replacement of the Galilean transformations of classical mechanics by the Lorentz transformations


Read More......

The Theory of Relativity


Two-dimensional projection of a three-dimensional analogy of spacetime curvature described in General Relativity

   The theory of relativity, or simply relativity, encompasses two theories of Albert Einstein: special relativity and general relativity. However, the word relativity is sometimes used in reference to Galilean invariance.

    The term "theory of relativity" was based on the expression "relative theory" used by Max Planck in 1906, who emphasized how the theory uses the principle of relativity. In the discussion section of the same paper Alfred Bucherer used for the first time the expression "theory of relativity".

    The theory of relativity enriched physics and astronomy during the 20th century. When first published, relativity superseded a 200-year-old theory of mechanics elucidated by Isaac Newton. It changed perceptions.

    For example, it overturned the concept of motion from Newton's day, into all motion is relative. Time was no longer uniform and absolute, as related to everyday experience. Furthermore, no longer could physics be understood as space by itself, and time by itself. Instead, an added dimension had to be taken into account with curved spacetime. Time now depended on velocity, and contraction became a fundamental consequence at appropriate speeds.

    In the field of microscopic physics, relativity catalyzed and added an essential depth of knowledge to the science of elementary particles and their fundamental interactions, along with introducing the nuclear age. With relativity, cosmology and astrophysics predicted extraordinary astronomical phenomena such as neutron stars, black holes, and gravitational waves.

    The theory of relativity was representative of more than a single new physical theory. It affected the theories and methodologies across all the physical sciences. However, as stated above, this is more likely perceived as two separate theories. There are some related explanations for this. First, special relativity was published in 1905, and the final form of general relativity was published in 1916.

   Second, special relativity fits with and solves for elementary particles and their interactions, whereas general relativity solves for the cosmological and astrophysical realm (including astronomy).

    Third, special relativity was widely accepted in the physics community by 1920. This theory rapidly became a notable and necessary tool for theorists and experimentalists in the new fields of atomic physics, nuclear physics, and quantum mechanics. Conversely, general relativity did not appear to be as useful. There had appeared to be little applicability for experimentalists as most applications were for astronomical scales. It seemed limited to only making minor corrections to predictions of Newtonian gravitation theory. Its impact was not apparent until the 1930s.

    Finally, the mathematics of general relativity appeared to be incomprehensibly dense. Consequently, only a small number of people in the world, at that time, could fully understand the theory in detail. This remained the case for the next 40 years. Then, at around 1960 a critical resurgence in interest occurred which has resulted in making general relativity central to physics and astronomy. New mathematical techniques applicable to the study of general relativity substantially streamlined calculations. From this, physically discernible concepts were isolated from the mathematical complexity. Also, the discovery of exotic astronomical phenomena in which general relativity was crucially relevant, helped to catalyze this resurgence. The astronomical phenomena included quasars (1963), the 3-kelvin microwave background radiation (1965), pulsars (1967), and the discovery of the first black hole candidates (1971).

Read More......